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Abstract. The Thomas-Fermi equation, in conjunction with the Poisson equation is solved exactly for the
problem of the two-dimensional circular parabolic quantum dot in the presence of a weak magnetic field,
in the framework of the local spin-density approximation. The total energy, chemical potential, differential
capacitance, degree of polarization, and diamagnetic susceptibility were calculated. Asymptotic solutions
were obtained for the limits of strong and weak confinement.

PACS. 85.30.Vw Low-dimensional quantum devices (quantum dots, quantum wires etc.) –
71.10.Ca Electron gas, Fermi gas

1 Introduction

Great advances in nanotechnology have allowed the fab-
rication of quasi-two-dimensional systems like quantum
dots, which have been the object of very active re-
search during the last years (see e.g. [1–3], and refer-
ences therein). It has been shown that they have basically
parabolic confinement [4,5]. The influence of an external
magnetic field induces changes in their behavior, giving
rise to phenomena both of academic and application in-
terest. While their effective dimension is usually two, the
many-electron nature of the problem makes the calcula-
tion of its properties a complicated task. For that reason
only few-electron dots have been treated exactly or to a
fairly high degree of accuracy (see e.g. [6–9]), or they have
been studied in special geometries like in reference [10].

A few exactly solvable models have been proposed
through the years in order to gain insight of the behav-
ior of these systems of many electrons [11–13] at the ex-
act, Hartree-Fock, and Hartree level, using model electron-
electron interaction potentials.

If the number of electrons is large enough, the sys-
tem can be treated approximately as an electron gas.
The Thomas-Fermi approximation and its subsequent
improvements [14–18] have been of great use in the
calculation of the ground state properties of many-
particle problems, e.g. atoms, molecules, solids, and nu-
clei. They have been also applied to the calculation of
properties of quasi-two-dimensional systems, such as pla-
nar molecules [19]. Recently, Lieb et al. [20] have an-
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alyzed the two-dimensional Thomas-Fermi problem in
the presence of a magnetic field with (three-dimensional)
Coulombic electron-electron interaction for parabolic con-
finement. The three-dimensional Thomas-Fermi problem
of parabolic confinement was studied by Ballinger and
March [21]. The present author has solved exactly the
Thomas-Fermi circular parabolic quantum dot of N in-
teracting electrons through a logarithmic potential in the
absence of magnetic field [22], also the corresponding clas-
sical problem, i.e., neglecting the kinetic energy.

In this article we apply the local spin-density (LSD)
approach to the study of a fully two-dimensional quantum
dot of parabolic confinement within the Thomas-Fermi ap-
proximation. The article has been structured as follows:
in Section 2 we have solved exactly the two-dimensional
Thomas-Fermi equation in conjunction with the Poisson’s
equation for a parabolic quantum dot in the presence of a
weak magnetic field; the total energy, chemical potential,
differential capacitance, magnetization and diamagnetic
susceptibility are also calculated. In Section 3 we obtain
the strong and weak confinement limits for the dot size
and all the other magnitudes calculated in the previous
section. In Section 4 we briefly discuss the classical ap-
proximation in the LSD approach, and also the number of
electrons that the dot could support; we also make qualita-
tive comparisons with some results reported in literature.

2 The Thomas-Fermi solution

Let us consider a D-dimensional electron gas in
the effective-mass approximation. The Thomas-Fermi
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equation can be written as [23,24]:

1
2m∗

p2
F + v + Ve = µ (1)

where m∗ is the effective mass (measured in units of elec-
tron mass), pF is the Fermi momentum, v is the external
potential, Ve is the electrostatic potential, which should
satisfy the Poisson equation, and µ is the chemical poten-
tial. Throughout the whole paper we are going to use the
units where me = ~ = e = ε0 = 1. Since pF ∝ ρ2/D (D is
the dimension of the space) and Ve =

∫
dr′ρ(r′)K(|r−r′|),

where K is the kernel of the electron-electron interaction
one may write

µ = v(r0) + Ve(r0) (2)

where r0 is where the density vanishes (classical turning
point). This magnitude will determine the appearance of
the conductance peak by the equalization of the dot’s and
the gates’ chemical potential [2].

The two dimensional Thomas-Fermi equation (1) has
to be solved in conjunction with Poisson’s equation:

∇2Ve = −2π
ρ(r)
ε
, (3)

where ε is the relative dielectric constant of the host ma-
terial. The solution of the above equation for the electro-
static potential is

Ve(r) = −1
ε

∫
d2r′ρ(r′) ln(|r− r′|/a), (4)

which fixes the form of the kernel of the electron-electron
interaction, and where a is a constant that fixes the zero
of the electrostatic potential. Other choices of the kernel
(see e.g. [2]) do not satisfy Poisson’s equation. In general,
it seems a difficult task to determine the correct form of
the two-dimensional electron-electron interaction kernel,
since there are some effects which we have to take into
account like the smearing of the wavefunction in the di-
rection perpendicular to the plane of the electrons, and
the effect of image charges on the leads [2].

In a radially symmetric configuration equation (4) can
be written as

Ve(r) =
N

ε
ln a− 2

π

ε

[
ln r

∫ r

0

dr′r′ρ(r′)

+
∫ r0

r

dr′r′ ln r′ρ(r′)
]
. (5)

Without any loss of generality, let us suppose that the
sign of the magnetic field is such that there are more spin
down electrons than spin up electrons. A choice of a ≥ R−,
where R− will be now the effective size of the dot (where
the spin down electron density vanishes), may guarantee
that the electron-electron interaction is always repulsive
inside of the dot, for simplicity we will take a = R−, which
means that Ve(R−) = 0. The form of the electron-electron
interaction of equation (5) is more realistic than e.g. the

harmonic one (see e.g. [2,11,13]). Furthermore, the use of
the three-dimensional electron-electron interaction kernel
(K(|r− r′|) = |r− r′|−1) leads to an unphysical behavior
of the derivative of the density around the origin (it is
positive instead of being zero or negative) [25], probably
because it is a too singular interaction potential for two
dimensions, at least for the Thomas-Fermi theory.

The analysis based in equations (1–4) will be valid for
zero magnetic field. The generalization to a non-zero field
is done by using the local spin-density approach (LSD)
(see e.g. [26–28]), considering only the interaction between
the spin and the external magnetic field and neglecting the
changes in the kinetic energy term [29]. For this purpose,
we add to the spin-dependent Thomas-Fermi energy vari-
ational equation the term corresponding to the spin-field
interaction

E[ρ+, ρ−;B] = ETF[ρ+] +ETF[ρ−]

+ g∗
B

2

∫
dr(ρ+ − ρ−) +

1
2m∗

JB (6)

where

ETF[ρ+, ρ−] =
∫

dr[
π

m∗
ρ2
±(r) + v(r)ρ±(r)

+
1
2
Ve(ρ(r); r)ρ±(r)], (7)

and ρ(r) = ρ+(r) + ρ−(r) is the total density. We have
changed the constant of the kinetic energy term to the
spin-dependent one. We are also assuming that the mag-
netic field is weak enough that it will not affect the to-
tal angular-momentum state of the electrons J (because
the energy of flipping one spin is small and we are ne-
glecting the exchange energy), and it is included as the
last term of equation (6). In this approximation there is
no self-consistent way of determining the value of J , but
with the assumptions made above, most of the properties
estimated here are independent of J , at least for weak
magnetic fields.

Taking the functional derivative of equation (6) we get

2π
m∗

ρ± + Ve(r) +
1
2
m∗ω2r2 ± 1

2
g∗B = µ (8)

where the + sign corresponds to the spin up electrons
and the − to the spin down ones, respectively, g∗ is the
effective coupling constant, and µ is the chemical po-
tential. We have included in ω the cyclotronic frequency
ωc = B/m∗ as

v(r) =
1
2
m∗ω2r2 =

1
2
m∗
(
ω2

0 +
ω2

c

4

)
r2, (9)

where ω0 is the constant of confinement of the dot.
Taking the difference between the equations for the

spin up and down densities (see Eq. (8)), we obtain the
relation

2π
m∗

(ρ+ − ρ−) = −g∗B (10)
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substituting in Poisson’s equation we find

2π
m∗
∇2ρ±(r)− 2π

ε

[
2ρ±(r) ± g∗m

∗B

2π

]
+ 2m∗ω2 = 0,

(11)

if equation (10) is valid.
Now, for circular symmetry we make the substitution

y± = ρ±(r) − m∗ω2ε

2π
± g∗m∗B

4π
, (12)

κ2 =
2m∗

ε
, (13)

then we obtain

y′′± +
1
r
y′± − κ2y± = 0 (14)

valid in the region r ≤ R+, where R+ is the classical
turning point for the spin up electrons.

ρ+(r) = 0 (15)

for r ≥ R+. Then ρ = ρ− and equation (10) is no longer
valid. Now equation (8) will be written as

y′′− +
1
r
y ′− − δ2y− = 0 (16)

where δ2 = κ2/2, for R+ ≤ r ≤ R−, where R−, corre-
spondingly, is the classical turning point for spin down
electrons, and

y− = ρ−(r) − m∗ω2ε

π
(17)

and finally

ρ−(r) = 0 (18)

for r ≥ R−.
After solving equation (11)

ρ±(r) = A±I0(κr) +A1±K0(κr) +
m∗ω2ε

2π
∓ g∗m

∗B

4π
(19)

for r ≤ R+, and where I0(x) and K0(x) are the modified
Bessel functions of first and second kind, respectively [30].
The constantsA1± must be taken as zero, since the density
at the origin must be bounded because there the external
potential vanishes.

The total density can be written as (see Appendix A)

ρ±(r) =
m∗

2π

[
ω2ε∓ g∗B

2
−
(
ω2ε− g∗B

2

)
I0(κr)
I0(κR+)

]
.

(20)

After solving equation (16)

ρ−(r) = CI0(δr) +DK0(δr) +
m∗ω2ε

π
· (21)

The coefficients A, B, C, D, R− and R+ are determined in
Appendix A by making use of the continuity properties of
the density, the chemical potential and the normalization
condition. It leads to a system of non-linear equations.

The chemical potential can be determined by using
equation (2) and the choice of a = R− in equation (4),
which means that the zero of the electrostatic potential is
at R−,

µ =
1
2
m∗ω2R2

−. (22)

The differential capacitance can be calculated follow-
ing [31]

Cd =
1

µ(N)− µ(N − 1)
· (23)

As we are considering a large number of electrons, the
above equation can be written as:

Cd ≈
(

dµ
dN

)−1

. (24)

The total energy can be calculated by taking Ve from
equation (8) and substituting into the total energy ex-
pression of equations (6) and (7)

E =
1
2
µN +

1
2

∫
drv(r)ρ(r)

+
g∗B

4

∫
dr(ρ+(r) − ρ−(r)) +

1
2m∗

JB. (25)

Substituting equations (9), (20) and (21) and integrating
we get

E =
1
2
µN +

m∗ω2π

2

[
2A
(
R3

+

κ
I1(κR+)

−2
R2

+

κ2
I2(κR+)

)
+
m∗ω2εR2

−
4π

+C
(
R3
−
δ
I1(δR−)− 2

R2
−
δ2
I2(δR−)

−R
3
+

δ
I1(δR+) + 2

R2
+

δ2
I2(δR+)

)
+D

(
−R

3
−
δ
K1(δR−)− 2

R2
−
δ2
K2(δR−)

−R
3
+

δ
K1(δR+) + 2

R2
+

δ2
K2(δR+)

)]
− g∗B

4

{
g∗m∗B

2
R2

+ +m∗ω2ε(R2
− −R2

+)

+
2πC
δ

[R−I1(δR−)−R+I1(δR+)]

−2πD
δ

[R−K1(δR−)−R+K1(δR+)]
}

+
1

2m∗
JB. (26)
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Using perturbation theory and retaining terms up to sec-
ond order from the contribution to the energy coming
from a magnetic field perpendicular to the plane of inter-
est, Langevin’s diamagnetic susceptibility can be written
as [32]:

χ = −N
4
〈0|r2|0〉 = −N

2
π

∫ R−

0

drr3ρ(r), (27)

substituting equations (20) and (21) into the above one
we obtain that

χ = −Nπ
2

[
2A
(
R3

+

κ
I1(κR+)− 2

R2
+

κ2
I2(κR+)

)
+
m∗ω2εR2

−
4π

+ C

(
R3
−
δ
I1(δR−)− 2

R2
−
δ2
I2(δR−)

−R
3
+

δ
I1(δR+) + 2

R2
+

δ2
I2(δR+)

)
+D

(
−R

3
−
δ
K1(δR−)

−2
R2
−
δ2
K2(δR−) +

R3
+

δ
K1(δR+) + 2

R2
+

δ2
K2(δR+)

)]
.

(28)

The degree of polarization ξ is the ratio of the difference
between the number of spin up and down electrons, and
the total number of electrons,

ξ =
N− −N+

N− +N+
=
N− −N+

N
, (29)

using equations (20) and (21), the above equation yields

ξ =
1
N

{
g∗m∗B

2
R2

+ +m∗ω2ε(R2
− −R2

+)

+
2πC
δ

[R−I1(δR−)−R+I1(δR+)]

−2πD
δ

[R−K1(δR−)−R+K1(δR+)]
}
. (30)

3 Asymptotic solutions

Since we are dealing with weak magnetic fields,
equation (10) suggests to us that (if dρ/dr is not small)
∆ = R−−R+ should be small. The point where the spin-
less density [22] vanishes (r0) is approximately halfway
between R+ and R−. Thus, we can write

ρ′0(r0) ≈ 2ρ0(r0)
∆

· (31)

We can assume also, that ρ0(r0) is approximately the
half of the value of ρ−(R+), and using equation (10) we
find that

∆ ≈ m∗g∗B

2π|ρ′0(r0)| · (32)

Using the form of the spinless density (Appendix B),

∆ ≈ g∗B

2ω2εκ

I0(κr0)
I1(κr0)

· (33)

We now consider the limiting cases of weak and strong
confinement, when ω2ε2 � N and ω2ε2 � N , respectively.

By using the asymptotics of the modified Bessel’s func-
tions [30] and the results for the unpolarized case (see
Appendix B) we can see that for weak confinement

∆ ≈ g∗B

2ω2(2m∗ε)1/2
· (34)

In the strong confinement limit, it is easy to see that
|ρ′(r0)| → ∞, which means simply that

∆ ≈ m∗g∗B

4π
· (35)

In both cases ∆ should be small compared with r0. For
weak confinement this means that

N � 1
2

(
g∗B

2ω

)2

(36)

while for the case of strong confinement it means that

N1/2 � m∗3g∗2ωB2

32π2
· (37)

After equation (22) the chemical potential can be approx-
imated as

µ ≈ 1
2
m∗ω2r2

0

(
1 +

∆

r0

)
= µ0 +∆µ, (38)

where µ0 is the chemical potential at zero magnetic field.
This means that for weak confinement, using the results
of reference [22] (see Appendix B)

µ ≈ N

2ε
+

1
4

(
N

2εω3

)1/2

g∗B, (39)

and

µ ≈ ωN1/2 +
(2m∗3ω3)1/2

8π
N1/4g∗B (40)

for strong confinement.
Using equation (24) and equations (39) and (40) we

obtain for the differential capacitance that

Cd ≈
[

1
2ε

+
1
8

g∗B

(2Nεω3)1/2

]−1

≈ 2ε
(

1− εg∗B

4(2Nεω)1/2

)
(41)

for weak confinement, and

Cd ≈
[

1
2

ω

N1/2
+
g∗B(2εω3)1/2

32πN3/4

]−1

≈ 2N1/2

ω

(
1− g∗B(2εω)1/2

16πN1/4

)
(42)

for strong confinement.



R. Pino: Two-dimensional Thomas-Fermi parabolic quantum dot in a weak magnetic field 727

For r ≤ r+
0 the difference between the total elec-

tron density (Eq. (20)) and the spinless density of
equation (B.1) can be approximated by

∆ρ = ρ−(r) + ρ+(r) − ρ0(r)

≈ m∗

π

[
g∗B − ω2ε

I1(κr0)
I0(κr0)

κ∆

2

]
I0(κr)
I0(κr0)

, (43)

which is of first order in B, since ∆ ∝ B.
The degree of polarization can be estimated up to first

order in B by

ξ ≈ m∗g∗Br2
0

2N
· (44)

This means that for weak confinement we have

ξ ≈ g∗B

2ω2ε
, (45)

and for strong confinement

ξ ≈ g∗B

N1/2ω
· (46)

For the energy, after equation (25)

E =
µN

2
− g∗Bξ

4
N +

1
2
〈v〉 +

1
2m∗

JB, (47)

with

〈v〉 ≈ m∗ω2π

∫ r+
0

0

drr3(ρ0 +∆ρ) +
1
4
m∗2ω2g∗r3

0B∆

(48)

the first term is equal to the integral from 0 to r0 neglect-
ing second order terms in B and the second term is of
order B2.

Thus, the total energy can be written up to first order
in B as

E ≈ E0 +
N

2
∆µ+

1
2
∆v +

1
2m∗

JB. (49)

where ∆v = 〈v〉 − 〈v〉B=0 (see Appendix A). Then,

E ≈ E0 +
1
2
m∗ω2r0∆+

1
8
ω2

0εr
4
0B

+
r2
0ε

2m∗
ω2

0

[
m∗2

(
g∗B − ω2

0ε
I1(κr0)
I0(κr0)

κ∆

2

)
− εB

2

]
×
(
κr0

I1(κr0)
I0(κr0)

− 2
I2(κr0)
I0(κr0)

)
+

1
2m∗

JB. (50)

This means that using the results of reference [22] for
the energy, and the asymptotic series of the Bessel func-
tions [30] in equation (50), for the weak confinement limit
we have

E ≈ 3
8
N2

ε
+

1
8

(
N3

2εω3

)1/2

g∗B +
1
8

N2

ω2m∗2ε
B

+
21/2

4
N3/2

ωεm∗2

(
3m∗

2
− ε

g∗

)
g∗B +

1
2m∗

JB (51)

and for the strong one

E ≈ 2
3
ωN3/2 +

(2m∗3ω3)1/2

16π
N5/4g∗B +

1
2
Nε

m∗2
B

+
2N
m∗2

[
m∗2

(
1− N1/4

4π
(
2m∗ω3

)1/2)− ε

2g∗

]
g∗B

+
1

2m∗
JB, (52)

neglecting the terms of powers on B higher than one.
The results of equation (51) can be read in the following
way: for weak confinement the density is roughly constant
which means that the confinement energy is proportional
to N2, since it is roughly ω2r2

0N and r2
0 ∝ N/ω2 after

equation (B.2) of Appendix B; the electron-electron in-
teraction energy is also proportional to N2, since it will
be proportional to the integral of the square of the den-
sity, the kinetic energy will be linear on N . For strong
confinement (Eq. (52)) the leading terms are the kinetic
energy and the harmonic field energy, both proportional
to ωN2, the first because it is roughly N2/r2

0 and the sec-
ond because it is roughly ω2r2

0N ; from equation (B.3) of
Appendix B, r2

0 ∝ N1/2/ω which leads to the result that
the total energy is proportional to the confinement con-
stant and to N3/2. The chemical potential and the capac-
itance could be interpreted in a similar fashion.

For the diamagnetic susceptibility (see Eq. (27)), using
the same arguments, and neglecting second and higher
order terms in B, we obtain that

χ ≈ χ0 −
Nπ

2

∫ r0

0

drr3∆ρ. (53)

Substituting equation (43) and integrating, we obtain

χ ≈ χ0 −
Nr2

0ε

4

(
g∗B − ω2

0ε
I1(κr0)
I0(κr0)

κ∆

2

)
×
(
κr0

I1(κr0)
I0(κr0)

− 2
I2(κr0)
I0(κr0)

)
, (54)

where χ0 is the diamagnetic susceptibility for zero mag-
netic field [33] (see Appendix B). By using the results of
equations (B.2, 35), (B.9), and (B.10), and the asymp-
totic expansions of the modified Bessel functions [30] of
equation (54), we find that

χ ≈ −1
8

N3

m∗ω2ε
− 3 · 21/2

16
N5/2

m∗εω3
g∗B (55)

for weak confinement and

χ ≈ −1
6
N5/2

m∗ω
− N2

2m∗ω2

[
1− (2m∗ω)3/2N1/4

8π

]
g∗B (56)

for strong confinement, up to first order in B.

4 Discussion

The solutions obtained in Section 2 are exact in the ex-
tent we know exactly the values of R+ and R−, for which



728 The European Physical Journal B

we give asymptotic values in Section 3. This means that
the criteria of weak magnetic field will be determined by
the range of validity of the local-spin Thomas-Fermi equa-
tions. On the other hand, the validity of the results of
Section 3 is limited also by the validity of the expansions
used on which we retain only linear terms.

It has been shown in reference [20] that the classical
limit (i.e. the kinetic energy term is neglected) gives the
correct limit for weak confinement using three-dimensional
Coulombic electron-electron interaction.

The case of zero magnetic field of a completely two-
dimensional parabolic quantum dot within the classical
approximation (i.e., neglecting the kinetic energy) was
treated in reference [22]; the result is that the density is
constant in a circle of radius r0c,

ρc(r) =
m∗ω2ε

π
r ≤ r0c, (57)

with

r0c =
1
ω

(
N

m∗ε

)1/2

, (58)

and is zero outside of this circle. It has been also obtained
for this case that the classical limit corresponds to the
limit of weak confinement.

If we try to follow the same steps for the derivation
of equations (8) and (10) (but now neglecting the kinetic
energy), we see that we cannot include the effects of spin
since it would lead to g∗B = 0. This means that the con-
sideration of the kinetic energy is crucial to get the spin
effects.

In practical situations the confining potential (approx-
imated by ω2

0r
2/2) is always bounded and spatially finite.

In the absence of magnetic field a dot with bounded po-
tential can support a finite number of electrons and is
limited by the height of the confining potential V0 (for a
more detailed discussion see Ref. [22]). In a magnetic field,
the effect of (magnetic) confinement (ω2

cr
2/8) will change

the number of electrons that such a dot can support by
increasing the range on which electrons can be retained in

δR ≈ ω2
c

8ω2
0

R0 (59)

where R0 = (2V0/m
∗)1/2/ω0. The condition for confine-

ment will be

R = R0 + δR ≥ R−, (60)

which means that the sign of the variation will depend
on the ratio between ∆ and δR. This ratio depends on
the characteristics of the material and the height of the
potential of confinement. Using the asymptotic results of
equations (B.2) and (34), we find that for strong confine-
ment

N ≤ V 2
0

ω2
(1 + δxs)4 (61)

where

δxs =
B

8m∗ω3
− Bm∗g∗ω

4π

(
m∗

2V0

)1/2

. (62)

For weak confinement we get

N ≤ 2εV0(1 + δxw)2 (63)

where

δxw =
B

8m∗ω3
− Bg∗

2ω(2m∗ε)1/2

(
m∗

2V0

)1/2

. (64)

The signs of δxs and δxw will determine whether the num-
ber of electrons that the dot can support increases or de-
creases in respect to the unpolarized dot. Both δxs and
δxw goes to zero as the magnetic field goes to zero, recov-
ering the zero magnetic field cases [22].

In reference [31], the authors calculated the total en-
ergy, chemical potential and differential capacitance for
quantum dots with up to 12 electrons within the unre-
stricted Hartree-Fock approximation. Their numerical re-
sults for the energy show nonlinear increase in function of
the number of electrons, in qualitative agreement with our
estimates. From their numerical results, a change can be
observed in the behavior of the chemical potential, from
nonlinear to linear variation with the increase of the num-
ber of electrons, also in agreement with our results (see
Eqs. (39) and (40)). Furthermore, the calculated capac-
itance for strong confinement is much smaller than the
capacitance for weak confinement, result that is qualita-
tively reproduced by equations (41) and (42), which can
be seen from the strong confinement condition that leads
to ε� N1/2/ω.

In reference [34] the authors present density-functional
calculations of circular parabolic quantum dots for zero
magnetic field using the local and spin density approxima-
tions and also the current-spin density functional approx-
imation. Based in their published results, the behavior of
the total energy in function of the number of electrons
can be well approximated by a function proportional to a
power of N , where the value of the exponent is approx-
imately 1.75 which is halfway between the estimates of
equations (51) and (52) (2 and 3/2, respectively). Fur-
thermore, the plot of the chemical potential (estimated
as E(N + 1)−E(N)), shows a behavior which is roughly
sublinear for less electrons and becomes linear for more
electrons, in qualitative agreement with our findings.

Only continuous changes in the physical magnitudes
can be expected in our results, since the Thomas-Fermi
approximation is unable to reproduce one-electron prop-
erties as shell structure [26,27]. Nevertheless, the results
are asymptotically correct and they could serve as good
starting point for more elaborated calculations.

In conclusion, we have solved exactly the Thomas-
Fermi equation in conjunction with Poisson’s equation
for the problem of the two-dimensional circular parabolic
quantum dot in the presence of a weak magnetic field
within the framework of the local spin-density approx-
imation. We have written the exact expressions for
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the total energy, chemical potential, differential capaci-
tance, degree of polarization, and diamagnetic suscepti-
bility. We obtained asymptotic solutions for the limits of
strong and weak confinement. In all expansions we have
retained the terms linear in the magnetic field since we are
assuming that this field is weak enough to neglect higher
orders. We have also shown that in the classical limit the
spin effects cannot be taken into account, at least within
the LSD approach, and we have given an estimate of the
number of electrons that the dot could support.

The author is grateful to Prof. E.V. Ludeña and Dr. R. López-
Boada for advice and encouragement. He would like to thank
Dr. J. Rivero for the critical reading of the manuscript. Dis-
cussions with Dr. R. Medina and P. Silva are also gratefully
acknowledged.

Appendix A: Coefficients of the density

Here we derive the expressions of the coefficients.
By continuity and using equations (10), (15) and (19)

A+ = A− = A = −
(
m∗ω2ε

2π
− g∗m∗B

4π

)
1

I0(κR+)
·

(A.1)

By continuity at R+, and using equation (10) we get that

CI0(κR+) +DK0(κR+) +
m∗ω2ε

π
=
g∗m∗B

2π
(A.2)

and by continuity at R−

CI0(δR−) +DK0(δR−) +
m∗ω2ε

π
= 0 (A.3)

and then

C =
m∗

2π
2ω2ε[K0(κR+)−K0(δR−)] + g∗BK0(δR−)
K0(δR−)I0(κR+)− I0(δR−)K0(κR+)

(A.4)

D =
m∗

2π
2ω2ε[I0(δR−)− I0(κR+)]− g∗BI0(δR−)
K0(δR−)I0(κR+)− I0(δR−)K0(κR+)

·

(A.5)

Evaluating equation (8) at R+ and R− we find

m∗ω2

2
R2
− −

m∗ω2

2
R2

+ − g∗B = Ve(R+) (A.6)

and using equation (5), the above equation becomes

− N

ε
lnR− − g∗B +

2π
ε
{2AR+

κ
lnR+I1(κR+)

+
m∗ω2ε

2π
R2
− lnR−

+
C

δ2
[δR− ln δR−I1(δR−)− I0(δR−)

− δR+ ln δR+I1(δR+) + I0(δR+)]

− D

δ2
[δR− ln δR−K1(δR−)−K0(δR−)

− δR+ ln δR+K1(δR+) +K0(δR+)]} = 0. (A.7)

Finally, the normalization condition will give us the miss-
ing equation

N =
∫

d2rρ(r) = 2π

{∫ R+

0

drr[ρ+(r) + ρ−(r)]

+
∫ R−

R+

drrρ−(r)

}
. (A.8)

Substituting equations (20) and (21) into equation (29),
it becomes

N = m∗ω2εR2
− +

4πA
κ

R+I1(κR+)

+
2πC
δ

[R−I1(δR−)−R+I1(δR+)]

− 2πD
δ

[R−K1(δR−)−R+K1(δR+)]. (A.9)

We have to solve the system of non-linear equations com-
prised of equations (A.1), (A.4), (A.5), (A.7), and (A.9),
to get R+, R−, A, C, and D.

Regarding the expectation value of the potential,
equation (48) can be written as

〈v〉 ≈ 〈v〉B=0 +
ω2

c

4
〈r2〉+m∗ω2

0π

∫ r0

0

drr3∆ρ. (A.10)

Substituting equation (44) into equation (47) and approx-
imating as usual, we will have up to first order in B,

〈v〉 ≈ 〈v〉B=0 +
1
8
ω2

0εr
4
0B

+
r2
0ε

2m∗
ω2

0

I0(κr0)

[
m∗2

(
g∗B − ω2

0ε
I1(κr0)
I0(κr0)

κ∆

2

)
− εB

2

]
(κr0I1(κr0)− 2I2(κr0)) = 〈v〉B=0 +∆v,

(A.11)

where 〈v〉B=0 is the expectation value of the potential for
zero magnetic field.

Appendix B: Unpolarized case formulae

From reference [22] the spinless density is

ρ0(r) =
m∗ω2ε

π

[
1− I0(κr)

I0(κr0)

]
, (B.1)

where r0 is the classical turning point (effective radius of
the dot) which is determined by the normalization con-
dition, that leads to a nonlinear equation. The effective
radius of the dot is

r0 ≈
N1/2

ω(m∗ε)1/2
(B.2)
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for weak confinement, and

r0 ≈ N1/4

(
2

m∗ω

)1/2

(B.3)

for strong confinement.
The chemical potential at zero magnetic field [22] can

be written as

µ0 ≈
N

2ε
(B.4)

for weak confinement and

µ0 ≈ ωN1/2 (B.5)

for strong confinement.
Correspondingly, the differential capacitance can be

written as

C0
d ≈ 2ε (B.6)

for weak confinement, and

C0
d ≈

2N1/2

ω
(B.7)

for strong confinement.
The diamagnetic susceptibility for zero magnetic field

limit [33] is equal to

χ0 =−Nω
2εm∗

2
r2
0

[
r2
0

4
− r0
κ

I1(κr0)
I0(κr0)

+2
I2(κr0)
I0(κr0)

1
κ2

]
. (B.8)

In the weak confinement limit this becomes

χ0 ≈ −
1
8

N3

m∗ω2ε
(B.9)

and

χ0 ≈ −
1
6
N5/2

m∗ω
(B.10)

in the strong one.

References

1. M.A. Kastner, Comm. Cond. Matt. 17, 349 (1996).
2. N.F. Johnson, J. Phys. Cond. Matter 7, 965 (1995).

3. T. Chakraborty, Comm. Cond. Matt. 16, 35 (1992).
4. Ch. Sikorski, U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).
5. F.M. Peeters, Phys. Rev. B 42, 1486 (1990).
6. P.A. Maksym, T. Chakraborty, Phys. Rev. Lett. 65, 108

(1990).
7. M. Taut, Phys. Rev. A. 48, 3561 (1993).
8. M. El-Said, J. Phys. I France 5, 1027 (1995).
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222 (1998).


